Kalan's Blog

本部落主要是關於前端、軟體開發以及我在日本的生活,也會寫一些對時事的觀察和雜感

目前主題 亮色

前言

生日悖論是個剛開始上統計學時,老師很喜歡拿來唬弄學生的招式。通常老師會徐徐從錢包拿出 100 元,並且問學生,在教室中有沒有兩個人同一天生日?

直覺上,我們可能會以為機率很低。不過事實上只要超過 23 人,2 人同一天生日的機率就有 50% 以上。

一部分的原因是我們將問題「其中兩人同一天生日」與「其中有人跟你同一天生日」聯想在一起,但兩者的機率是完全不一樣的。

「其中有人跟自己同一天生日」的機率為 $\frac{1}{365}%,不過「其中兩人同一天生日」的話因為範圍變廣了,機率自然也會增加。不過仍然有些違反直覺,照理來說,應該是呈現線性成長的才對吧?但事實上只要超過某個值,這個機率就會快速上升,我們下面會談到。

解法

補集

我們可以透過補集的方式來計算至少有兩人同一天生日的機率,也就是用 1 減去所有人生日都不相同的機率。那麼要怎麼計算呢?我們先來想想兩個人生日不同的機率:

365365×364365\frac{365}{365}\times\frac{364}{365}

第一個人有 365 天可以選,第二個人則是 364 天);接下來在想想三個人生日不同的機率

365365×364365×363365\frac{365}{365}\times\frac{364}{365}\times\frac{363}{365}

看出來了嗎?如果有 n 個人,則機率為365365×364365×363365×...n1365\frac{365}{365}\times\frac{364}{365}\times\frac{363}{365}\times...\frac{n-1}{365}

所以我們要求算的機率為: P=1(364365×363365×...n1365)0.5P=1-(\frac{364}{365}\times\frac{363}{365}\times...\frac{n-1}{365}) \geq 0.5 化簡一下:

WCM0004

我們可以利用1+x<ex1+x\lt e^{x}的特性,進一步修改不等式:

WCM0003

從這邊可以觀察到,因為可以用自然指數來逼近,所以機率的成長也會隨著人數的增長而呈現指數變化。

結論

很多時候我們學習數學常常會被公式跟奇形怪狀的題目耍得團團轉,卻一直沒有思考公式背後真正的含義、如何證明出來的,或者更重要的,學這些數學到底是為了解決什麼問題?

上一篇

如何 Code Review

下一篇

make 與 new 的差別

如果覺得這篇文章對你有幫助的話,可以考慮到下面的連結請我喝一杯 ☕️ 可以讓我平凡的一天變得閃閃發光 ✨

Buy me a coffee

作者

Kalan 頭像照片,在淡水拍攝,淺藍背景

愷開 | Kalan

愷開。台灣人,在 2019 年到日本工作,目前定居在福岡。除了熟悉前端之外對 IoT、App 開發、後端、電子電路領域都有涉略。最近開始玩電吉他。 歡迎 Email 諮詢或合作,聊聊音樂也可以,希望能透過這個部落格和更多的人交流。